
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Application of Bitwise Operators in C
Reshant Chandra, Saurabh Rawat, Tushar Jain

Abstract— Generally a programmer is not concern about the functioning at the bit level, he deals with data type i.e. int char as a whole.
He is not concern about how data is actually stored in the memory in the form of array of bits holding value ‘1’ or ‘0’. C language was
particularly created to make development of operating system easier. C language was developed as a replacement for UNIX in
development of operating systems. Manipulating data at individual bit level or as group of bits is required in development of operating
systems. Functioning at bit level is kept abstracted in normal C program. This research paper deals with the usage of bit wise operator in
normal C programs. The research paper tells about the different bitwise operator and illustrate how shift operator work for signed and
unsigned integer. Here we have also shown the different implementation of bitwise operator and how it can be used to calculate modulus,
manage Boolean flags in C programming.

Index Terms— binary equivalent, bits, bit mask, bitwise operator, Boolean flag, decimal equivalent, modulus operator, shift operator,
signed bit

—————————— ——————————

1 INTRODUCTION

In C language a 32bit integer is stored as its 32bit binary
equivalent. Logical operators work on the whole decimal
equivalent of these binary sequence but bit wise operator
works on each individual bit. For example a signed integer 245
will be saved as shown in fig 1.1:
.
0 0 0 0 0 0 0 0

It represents sign of integer

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 0 1 0 1

Fig 1.1 Memory allocation of signed interger 245

The left most integer represent the sign of the integer, ‘1’ for
negative and ‘0’ for positive. Negative numbers are saved as
the 2 compliment of its binary equivalent. Hence -245 will be
saved as shown in fig 1.2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 1 0 1 1

Fig 1.2 Memory allocation of signed interger -245

In fig 1.2 left most bit indicate the sign of the interger which is
negative hence 1. Bitwise operator works on each of the above
bit of the integer.

2 TYPE OF BITWISE OPERATOR
2.1 Bitwise AND (a & b)
Bitwise AND is similar to logical AND in functioning, the bit-
wise AND is applied to each bit of the both the operand, it
returns one if all the bits are ‘1’ else it always returns ‘0’. Truth
table of bitwise AND:

A b a & b
0 0 0
0 1 0
1 0 0
1 1 1

Example: a=12, b=21
a = 0 1 1 0 0 (12)
b = 1 0 1 0 1 (21)
a&b = 0 0 1 0 0 (4)

2.2 Bitwise OR (a | b)
Bitwise OR is similar to logical OR in functioning, the bitwise
OR is applied to each bit of the both the operand, it returns ‘1’
if any the bits are ‘1’, it returns ‘0’ only if all the bits are ‘0’.
Truth table of bitwise OR:

a b a | b
0 0 0
0 1 1
1 0 1
1 1 1

Example: a=12, b=21
a = 0 1 1 0 0 (12)
b = 1 0 1 0 1 (21)
a|b = 1 1 1 0 1 (29)

————————————————
• Author Reshant Chandra is a faculty of computer science department in

Graphic Era University, India. E-Mail: reshant.chandra@gmail.com
• Co-Author Saurabh Rawat, faculty, Graphic Era University, India.
• Co-Author Tushar Jain

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2.3 Bitwise XOR (a ^ b)
Bitwise XOR is similar to logical XOR in functioning, the bit-
wise XOR is applied to each bit of the both the operand, it
simple adds the bits and discard the remainder i.e. it return ‘1’
if both the bits are different and ‘0’ if both the bits are same.
Truth table of bitwise XOR:

A b a ^ b
0 0 0
0 1 1
1 0 1
1 1 0

Example: a=12, b=21
a = 0 1 1 0 0 (12)
b = 1 0 1 0 1 (21)
a^b = 1 1 0 0 1 (25)

2.4 Bitwise NOT (~ a)
It is applied to single operand. It inverts the each bit of the
operand. ‘0’ is changed to ‘1’ and vice versa. Truth table of
NOT is as followed.

A ~a
0 1
1 0

Example: a=12
a = 0 1 1 0 0 (12)
~a = 1 0 0 1 1 (19)

2.5 Left shift (a << b)
In left shift operator every bit in the operand is simply moved
a given number of bit positions towards left. ‘0’ are inserted
from right in the vacant places. Left shifting also work for
signed negative integers, since the negative numbers is saved
in the form of 2’s complement the left shift is applied to 2’s
compliment of the positive counterpart of the number, but in
case of signed integer it may cause a problem cause of the sign
bit as a positive number might turn negative and negative
number might turn positive. Due to this problem shift are
normally implemented on unsigned int. Left shifting for un-
signed integer is equivalent to multiplying the number by 2
for each bit shifted till overflow occurs i.e. number becoming
lager than a 32 bit integer.

Example of left shifting:
1) Example for left shift for positive integer
Let a = 324 = 0000 0000 0000 0000 0000 0001 0100 0100
x = a << 2 = 0000 0000 0000 0000 0000 0101 0001 0000 = 1296
= 324*2*2 (since 2 bits is shifted hence the result is a*2*2)
2) Example for left shift for negative signed integer
Let a = -10 = 1111 1111 1111 1111 1111 1111 1111 0110
x = a << 1 = 1111 1111 1111 1111 1111 1111 1110 1100 = which

is 2’s compliment of 20 hence denote -20.
I. 3) Example for inconsistence in left shift for signed integer

,change in signed bit (‘0’ to ‘1’ and ‘1’ to ‘0’).
Let a = - 34218 = 1111 1111 1111 1111 1000 0001 0101 1110
Now let x= a << 16 will result in
x = 1000 0001 0101 1110 0000 0000 0000 0000 = - 2124546048
which is equal to -34218 * (2^16) hence till now it has worked
fine. Now what will happen if we’ll left shift x one more time.
On x << 1 the resultant will be
0000 0010 1011 1100 0000 0000 0000 0000 = 45875200 which is a
positive number as the sign bit got changed. Hence inconsist-
ence may occur if we try to left shift signed integer.

II. 4) Example for overflow due to left shifting in unsigned
integer.
Let a = 45875200 = 0000 0010 1011 1100 0000 0000 0000 0000.
Now let x = a << 6 will result in
x = 1010 1111 0000 0000 0000 0000 0000 0000 = 2936012800 = a *
(2^6)
till now it works fine (here it’s an unsigned integer hence all 32
bits represent value of the integer, there is no signed bit). Now
if we try to left shift one more bit the answer should be x * 2 =
5872025600 which is a very big number and can’t be repre-
sented using 32 bits. Hence implementing one more shift will
make the number go out of bound.
x << 1 = 0101 1110 0000 0000 0000 0000 0000 0000 = 1577058304
which not the answer as expected since overflow has occurred.

2.6 Right shift (a>>b)

In right shift operator every bit in the operand is simply
moved a given number of bit positions towards right. The
right most bits are drop and new bits are inserted in from left.
On the bases of which bit to be inserted from the left, right
shift is divided into two type, logical right shift and arithmetic
right shift.

2.6.1 Logical right shift
Inserts ‘0’ and does not preserve the sign bit. In logical right
shift every single bit is shifted right and ‘0’ is inserted at the
vacant bit position on the left. It is used to perform division of
unsigned integer by 2 for each bit shifted. When ‘n’ bits are
shifted the number is divided by (2^n).

Example of logical right shift:
a = 1988 = 0000 0000 0000 0000 0000 0111 1100 0100 now let us
perform x = a >> 2 then
x = 0000 0000 0000 0000 0000 0001 1111 0001 = 497
x = a / (2^2)

2.6.2 Arithmetic right shift
Fill the vacant bits position with the value stored in the signed
bit or the left most bit. It preserved the sign bit hence it is also
known as signed bit. In case left most bit is ‘1’ then ‘1’ is in-
serted and if the left most but is ‘0’ then ‘0’ is inserted. It is
mainly implemented for signed integer. Shifting right by n bits
on the 2’s compliment of the signed integer gives the effect of
dividing by (2^n).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Example of Arithmetic right shift:
a = - 320 = 1111 1111 1111 1111 1111 1110 1100 0000
now let x = a >> 1 then
x = 1111 1111 1111 1111 1111 1111 0110 0000
which is 2’s compliment of 160 hence -160
x= a/2

It depends on compiler which right shift to use. Logical right
shift is used many when the bits does not represent a number
but simply a sequence of bits, while arithmetic right shift are
used in case of sign integer when sign bit is need to be pre-
served. Most of the C compiler use logical right shift for un-
signed integer while arithmetic right shift for the signed inte-
ger. Dues to this inconsistence shift operations are usually per-
formed on unsigned integer.

3 IMPLEMWNTATION OF BITWISE OPERATORS

Till now we have different type of bitwise operators now we’ll
show how these bitwise operators can be used in a C pro-
gramme. Multiple tasks can be done using bitwise operators;
shift operators can be used to multiply and divided a number
by 2 has been already illustrated above. Similarly there are
many other applications of bitwise operator in C language.
Different applications of bitwise operators are:

3.1 As a modulus operator:

The modulus operator computes the remainder after dividing
its first operand by its second. Bitwise AND operator can be
used as modulus operator.
Bitwise AND operator can be used to calculate the modulus of
numbers denoted by (2^n), where n is natural number. To
calculate modulus of number (2^n) we need to perform bit-
wise AND with (2^n)-1.To understand how it works we need
to first find the binary equivalent (2^n)-1 numbers where n is
natural number.

1 = 0000 0000 0000 0000 0000 0000 0000 0001
3 = 0000 0000 0000 0000 0000 0000 0000 0011
7 = 0000 0000 0000 0000 0000 0000 0000 0111
15 = 0000 0000 0000 0000 0000 0000 0000 1111
31 = 0000 0000 0000 0000 0000 0000 0001 1111
63 = 0000 0000 0000 0000 0000 0000 0011 1111
127= 0000 0000 0000 0000 0000 0000 0111 1111

Here we can notice that all these numbers are unique because
they have continuous sequence of ‘1’ from left hand side fol-
lowed by continuous sequence of ‘0’ till the right end. To ex-
plain how it works let us take a number say 7 which will cal-
culate modulus for 8.The number 7 has its 3 left most bits as 1
and rest all as zero. If we perform bitwise AND of any number
‘x’ with 7 the result will be; 3 left most bit will remain un-
changed and others will be set to ‘0’. Hence only the 3 left

most binary bits will be left from number ‘x’ and these 3 bits
will represent modulus 8 of x as shown
3 binary bits represent 0-7 values as shown:

a B c Decimal
equivalent

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Hence the result will be 3 left most bits which represent 0-7 in
decimal which are actually the possible answers for modulus
8. Hence performing bitwise AND with 7 will actually calcu-
late modulus 8.

X = 68 = 0000 0000 0000 0000 0000 0000 0100 0100
Y = 07 = 0000 0000 0000 0000 0000 0000 0000 0111
X & Y = 0000 0000 0000 0000 0000 0000 0000 0100
68 % 8 = 4 (hence it is working correctly)

main(){
int num = 15;
for (i=0; i< =100;i++){
 prinf(“%d”, i & num);
}
}

3.2 As Boolean flags and bit mask:

Let suppose a teacher need to send attendance of a student of
20 days as parameter to a function. One possible solution is
that he makes 30 different variables, or an array of 30 integers.
The bitwise logical operators are often used to create, manipu-
late, and read sequences of flags, which are like binary varia-
bles. Instead of variables or array these sequence can be used
which take much less memory as 1 integer can handle 32 flag.

We need to clear flag for each day of the month:

Flag_one: attendance of day one
 (0000 0000 0000 0000 0000 0000 0000 0001)
Flag_Two: attendance of day two
(0000 0000 0000 0000 0000 0000 0000 0010)
Flag_Three: attendance of day three
(0000 0000 0000 0000 0000 0000 0000 0100)
Flag_four: attendance of day four
(0000 0000 0000 0000 0000 0000 0000 1000)
Flag_five: attendance of day five
(0000 0000 0000 0000 0000 0000 0001 0000)
Flag_six: attendance of day six

This code prints the modu-
lus 16 of first 100 numbers
using bitwise AND with 15. IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

(0000 0000 0000 0000 0000 0000 0010 0000)
.
.
.

Flag_twenty: attendance of day twenty
(0000 0000 0000 1000 0000 0000 0000 0000)

Flag one mean student was present on day one; flag two mean
the student was present on day two and so on.

A single variable ‘attendance’ will contain the record of the
student the values will be stored as followed:

If the student was present on all days the data will be stored as

(0000 0000 0000 1111 1111 1111 1111 1111)

If the student was present on all days except on 5,8 ,13,and 20
 (0000 0000 0000 0111 1110 1111 0110 1111)

Attendance & flag_one > 0 means the student was present on
day one.

Attendance 0000 0000 0000 0111 1110 1111 0110 1111
Flag_four 0000 0000 0000 0000 0000 0000 0000 1000
Result of & 0000 0000 0000 0000 0000 0000 0000 1000 >0

hence was present on day four which is true.

And if Attendance & flag_one = 0 means the student was ab-
sent on day one.

Attendance 0000 0000 0000 0111 1110 1111 0110 1111
Flag_five 0000 0000 0000 0000 0000 0000 0001 0000
Result of & 0000 0000 0000 0000 0000 0000 0000 0000 = 0

hence was absent on day five which is true

To implement this we should be able to set and reset each bit
individually of an integer. Handling bit individually are done
by using bit mask.

Let us consider a number X, temp =1.

a) If I want to set nth bit i.e. set it to ‘1’ OR operator will be
used
X = X | (temp <<n), where X is the number and nth bit need to
set to ‘1’
In the above example if we want to mark the presence of day
two we perform
Attendance = attendance | (Flag_Two)

b) If I want to clear nth bit i.e. set it ‘0’ AND operator will be
used as followed.
X = X & ~(temp <<n), where X is the number and nth bit need
to set to ‘0’
In the above example if we want to mark the absence of day
two we perform
Attendance = attendance & ~(Flag_Two)

c) If I want to toggle nth bit i.e. change its value (if ‘1’ the ‘0’
and if ‘0’ then ’1’)

X = X ^ (temp <<n), where X is the number and nth need to be
toggled

4 CONCLUSION
We have concluded that an integer is treated as its 32 bit binary
equivalent by bitwise operators and there are applied on each bit
of the integer. We have seen that we can set clear or toggle a sin-
gle bit of an integer. Shifting with signed integer may not give
consistence result hence shifting is mainly done with unsigned
integers but they too face overflow problem. We can use bitwise
operator to multiply divide and even find the modulus of a num-
ber. Bitwise operators allow us to treat binary sequence of an
integer as Boolean flags hence using comparatively very less
space. .

REFERENCES
[1] Kernighan; Dennis Ritchie (March 1988). The C Programming Language (2nd ed.).
[2] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Com-

puter Programming,. Addison Wesley, Reading, MA, 2nd edition, 1973.
[3] The Ultimate C: Concepts, Programs and Interview Questions (Paperback)

by R. Nageswara Rao
[4] "Operator (C# Reference)". Microsoft. Retrieved 14 July 2013.
[5] C : The Complete Reference 4 Edition (Paperback) by Herbert Schildt
[6] . Head First C (Paperback) by David Griffiths
[7] Programming with C 3 Edition (Paperback) by Byron Gottfried
[8] Links:

http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/BitOp/bi
twise.html
 https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators

IJSER

http://www.ijser.org/
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/BitOp/bitwise.html
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/BitOp/bitwise.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators

	1 Introduction
	2 Type Of Bitwise Operator
	2.1 Bitwise AND (a & b)
	2.2 Bitwise OR (a | b)
	2.3 Bitwise XOR (a ^ b)
	2.4 Bitwise NOT (~ a)
	2.5 Left shift (a << b)
	2.6 Right shift (a>>b)
	2.6.1 Logical right shift
	2.6.2 Arithmetic right shift

	3 Implemwntation Of Bitwise Operators
	3.1 As a modulus operator:
	3.2 As Boolean flags and bit mask:

	4 Conclusion
	References

